List of publications

Preprints are (mostly) available on arXiv.

2024

  1. Řada, H., Starosta, Š., & Kala, V. (2024). Periodicity of general multidimensional continued fractions using repetend matrix form. Expositiones Mathematicae, 42(3), 125571. https://doi.org/10.1016/j.exmath.2024.125571
    DOI: bookmark 10.1016/j.exmath.2024.125571
    note Copy bibtex entry to clipboard
  2. Klouda, K., & Starosta, Š. (2024). The number of primitive words of unbounded exponent in the language of an HD0L-system is finite. Journal of Combinatorial Theory, Series A, 206, 105904. https://doi.org/10.1016/j.jcta.2024.105904
    DOI: bookmark 10.1016/j.jcta.2024.105904
    note Copy bibtex entry to clipboard

2023

  1. Starosta, Š. (2023). Infinite Words and Morphic Languages Formalized in Isabelle/HOL. https://doi.org/10.48550/arXiv.2303.11445
    preprint
    DOI: bookmark 10.48550/arXiv.2303.11445
    note Copy bibtex entry to clipboard
  2. Lepšová, J., Pelantová, E., & Štěpán Starosta. (2023). On a faithful representation of Sturmian morphisms. Eur. J. Combin., 110, 103707. https://doi.org/10.1016/j.ejc.2023.103707
    DOI: bookmark 10.1016/j.ejc.2023.103707
    URL: link https://www.sciencedirect.com/science/article/pii/S0195669823000240
    note Copy bibtex entry to clipboard
  3. Holub, Š., & Starosta, Š. (2023). Intersection of two monoids generated by two element codes. Archive of Formal Proofs. https://isa-afp.org/entries/Two_Generated_Word_Monoids_Intersection.html
    URL: link https://isa-afp.org/entries/Two_Generated_Word_Monoids_Intersection.html
    note Copy bibtex entry to clipboard
  4. Holub, Š., Raška, M., & Starosta, Š. (2023). Binary Codes that do not Preserve Primitivity. J. Automat. Reason., 67(3), 25. https://doi.org/10.1007/s10817-023-09674-2
    DOI: bookmark 10.1007/s10817-023-09674-2
    note Copy bibtex entry to clipboard

2022

  1. Holub, Š., Raška, M., & Starosta, Š. (2022). Binary Codes that Do Not Preserve Primitivity. In J. Blanchette, L. Kovács, & D. Pattinson (Eds.), Automated Reasoning (pp. 369–387). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-10769-6_23
    URL: link https://link.springer.com/chapter/10.1007/978-3-031-10769-6_23
    note Copy bibtex entry to clipboard

2021

  1. Holub, Š., & Starosta, Š. (2021). Formalization of Basic Combinatorics on Words. In L. Cohen & C. Kaliszyk (Eds.), 12th International Conference on Interactive Theorem Proving (ITP 2021) (Vol. 193, pp. 22:1–22:17). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ITP.2021.22
    DOI: bookmark 10.4230/LIPIcs.ITP.2021.22
    URL: link https://drops.dagstuhl.de/opus/volltexte/2021/13917
    note Copy bibtex entry to clipboard
  2. Holub, Š., & Starosta, Š. (2021). Lyndon Words Formalized in Isabelle/HOL. Developments in Language Theory: 25th International Conference, DLT 2021, Porto, Portugal, August 16–20, 2021, Proceedings, 217–228. https://doi.org/10.1007/978-3-030-81508-0_18
    DOI: bookmark 10.1007/978-3-030-81508-0_18
    note Copy bibtex entry to clipboard
  3. Raška, M., & Starosta, Š. (2021). Producing symmetrical facts for lists induced by the list reversal mapping in Isabelle/HOL. In J. Blanchette, J. Davenport, P. Koepke, M. Kohlhase, A. Kohlhase, A. Naumowicz, D. Müller, Y. Sharoda, & C. S. Coen (Eds.), Joint Proceedings of the FMM, FVPS, MathUI,NatFoM, and OpenMath Workshops, Doctoral Program, and Work in Progress at the Conference on Intelligent Computer Mathematics 2021 co-located with the 14th Conference on Intelligent Computer Mathematics (CICM 2021). https://kwarc.info/teaching/CICM21WS/fmm2.pdf
    URL: link https://kwarc.info/teaching/CICM21WS/fmm2.pdf
    note Copy bibtex entry to clipboard
  4. Barbieri, S., Labbé, S., & Starosta, Š. (2021). A characterization of Sturmian sequences by indistinguishable asymptotic pairs. European Journal of Combinatorics, 95, 103318. https://doi.org/10.1016/j.ejc.2021.103318
    DOI: bookmark 10.1016/j.ejc.2021.103318
    URL: link https://www.sciencedirect.com/science/article/pii/S019566982100010X
    note Copy bibtex entry to clipboard
  5. Štěpán Holub, Raška, M., & Štěpán Starosta. (2021). Combinatorics on Words Basics. Archive of Formal Proofs. https://isa-afp.org/entries/Combinatorics_Words.html
    URL: link https://isa-afp.org/entries/Combinatorics_Words.html
    note Copy bibtex entry to clipboard
  6. Holub, Š., & Starosta, Š. (2021). Graph Lemma. Archive of Formal Proofs. https://isa-afp.org/entries/Combinatorics_Words_Graph_Lemma.html
    URL: link https://isa-afp.org/entries/Combinatorics_Words_Graph_Lemma.html
    note Copy bibtex entry to clipboard
  7. Holub, Š., & Starosta, Š. (2021). Lyndon words. Archive of Formal Proofs. https://isa-afp.org/entries/Combinatorics_Words_Lyndon.html
    URL: link https://isa-afp.org/entries/Combinatorics_Words_Lyndon.html
    note Copy bibtex entry to clipboard

2020

  1. Řada, H., & Starosta, Š. (2020). Bounds on the period of the continued fraction after a Möbius transformation. Journal of Number Theory, 212, 122–172. https://doi.org/10.1016/j.jnt.2019.10.027
    DOI: bookmark 10.1016/j.jnt.2019.10.027
    URL: link https://www.sciencedirect.com/science/article/pii/S0022314X19303993
    note Copy bibtex entry to clipboard

2019

  1. Košík, V., & Starosta, Š. (2019). On Substitutions Closed Under Derivation: Examples. In R. Mercaş & D. Reidenbach (Eds.), Combinatorics on Words (Vol. 11682, pp. 226–237). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-28796-2_18
    URL: link https://link.springer.com/chapter/10.1007/978-3-030-28796-2_18
    note Copy bibtex entry to clipboard
  2. Klouda, K., & Starosta, Š. (2019). Characterization of circular D0L-systems. Theoretical Computer Science, 790, 131–137. https://doi.org/10.1016/j.tcs.2019.04.021
    DOI: bookmark 10.1016/j.tcs.2019.04.021
    URL: link https://www.sciencedirect.com/science/article/pii/S0304397519303093
    note Copy bibtex entry to clipboard

2018

  1. Klouda, K., Medková, K., Pelantová, E., & Štepán Starosta. (2018). Fixed points of Sturmian morphisms and their derivated words. Theoret. Comput. Sci., 743, 23–37. https://doi.org/10.1016/j.tcs.2018.06.037
    DOI: bookmark 10.1016/j.tcs.2018.06.037
    note Copy bibtex entry to clipboard

2017

  1. Labbé, S., Pelantová, E., & Starosta, Š. (2017). On the Zero Defect Conjecture. Eur. J. Combin., 62, 132–146. https://doi.org/10.1016/j.ejc.2016.12.006
    DOI: bookmark 10.1016/j.ejc.2016.12.006
    note Copy bibtex entry to clipboard
  2. Masáková, Z., Pelantová, E., & Štěpán Starosta. (2017). Exchange of three intervals: substitutions and palindromicity. Eur. J. Combin., 62, 217–231. https://doi.org/10.1016/j.ejc.2017.01.003
    DOI: bookmark 10.1016/j.ejc.2017.01.003
    note Copy bibtex entry to clipboard
  3. Pelantová, E., & Starosta, Š. (2017). On Words with the Zero Palindromic Defect. In S. Brlek, F. Dolce, C. Reutenauer, & É. Vandomme (Eds.), Combinatorics on Words (pp. 59–71). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-319-66396-8_7
    URL: link https://link.springer.com/chapter/10.1007/978-3-319-66396-8_7
    note Copy bibtex entry to clipboard

2016

  1. Starosta, Š. (2016). Morphic images of episturmian words having finite palindromic defect. Eur. J. Combin., 51, 359–371. https://doi.org/10.1016/j.ejc.2015.07.001
    DOI: bookmark 10.1016/j.ejc.2015.07.001
    note Copy bibtex entry to clipboard
  2. Pelantová, E., Štěpán Starosta, & Znojil, M. (2016). Markov constant and quantum instabilities. J. Phys. A: Math. Theor., 49(15), 155201. https://doi.org/10.1088/1751-8113/49/15/155201
    DOI: bookmark 10.1088/1751-8113/49/15/155201
    URL: link http://stacks.iop.org/1751-8121/49/i=15/a=155201
    note Copy bibtex entry to clipboard
  3. Pelantová, E., & Starosta, Š. (2016). Constructions of words rich in palindromes and pseudopalindromes. Discrete Math. Theoret. Comput. Sci., 18(3). https://doi.org/10.46298/dmtcs.655
    DOI: bookmark 10.46298/dmtcs.655
    note Copy bibtex entry to clipboard
  4. Masáková, Z., Pelantová, E., & Starosta, Š. (2016). ITINERARIES INDUCED BY EXCHANGE OF THREE INTERVALS. Acta Polytechnica, 56(6), 462–471. https://doi.org/10.14311/AP.2016.56.0462
    DOI: bookmark 10.14311/AP.2016.56.0462
    URL: link https://ojs.cvut.cz/ojs/index.php/ap/article/view/3794
    note Copy bibtex entry to clipboard

2015

  1. Kupsa, M., & Štěpán Starosta. (2015). On the partitions with Sturmian-like refinements. Discret. Contin. Dyn. S., 35(8), 3483–3501. https://doi.org/10.3934/dcds.2015.35.3483
    DOI: bookmark 10.3934/dcds.2015.35.3483
    URL: link http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10860
    note Copy bibtex entry to clipboard
  2. Masáková, Z., Pelantová, E., & Starosta, Š. (2015). Interval Exchange Words and the Question of Hof, Knill, and Simon. In I. Potapov (Ed.), Developments in Language Theory (pp. 377–388). Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-319-21500-6_30
    URL: link https://link.springer.com/chapter/10.1007/978-3-319-21500-6_30
    note Copy bibtex entry to clipboard
  3. Klouda, K., & Štěpán Starosta. (2015). An Algorithm Enumerating All Infinite Repetitions in a D0L-System. J. Discrete Algorithms, 33, 130–138. https://doi.org/10.1016/j.jda.2015.03.006
    DOI: bookmark 10.1016/j.jda.2015.03.006
    note Copy bibtex entry to clipboard

2014

  1. Pelantová, E., & Starosta, Š. (2014). Palindromic richness for languages invariant under more symmetries. Theoret. Comput. Sci, 518, 42–63. https://doi.org/10.1016/j.tcs.2013.07.021
    DOI: bookmark 10.1016/j.tcs.2013.07.021
    note Copy bibtex entry to clipboard
  2. Jajcayová, T., Pelantová, E., & Štěpán Starosta. (2014). Palindromic closures using multiple antimorphisms. Theoret. Comput. Sci., 533, 37–45. https://doi.org/10.1016/j.tcs.2014.03.020
    DOI: bookmark 10.1016/j.tcs.2014.03.020
    note Copy bibtex entry to clipboard

2013

  1. Balková L’ubomı́ra, Pelantová, E., & Starosta, Š. (2013). Proof of the Brlek-Reutenauer conjecture. Theoret. Comput. Sci., 475, 120–125. https://doi.org/10.1016/j.tcs.2012.12.024
    DOI: bookmark 10.1016/j.tcs.2012.12.024
    note Copy bibtex entry to clipboard
  2. Pelantová, E., & Starosta, Š. (2013). Languages invariant under more symmetries: overlapping factors versus palindromic richness. Discrete Math., 313, 2432–2445. https://doi.org/10.1016/j.disc.2013.07.00
    DOI: bookmark 10.1016/j.disc.2013.07.00
    note Copy bibtex entry to clipboard
  3. Arnoux, P., & Štěpán Starosta. (2013). The Rauzy gasket. In J. Barral & S. Seuret (Eds.), Further Developments in Fractals and Related Fields (pp. 1–23). Springer Science+Business Media New York. https://link.springer.com/chapter/10.1007/978-0-8176-8400-6_1
    URL: link https://link.springer.com/chapter/10.1007/978-0-8176-8400-6_1
    note Copy bibtex entry to clipboard

2012

  1. Pelantová, E., & Starosta, Š. (2012). Almost rich words as morphic images of rich words. International Journal of Foundations of Computer Science, 23(05), 1067–1083. https://doi.org/10.1142/S012905411240045X
    DOI: bookmark 10.1142/S012905411240045X
    note Copy bibtex entry to clipboard
  2. Starosta, Š. (2012). Generalized Thue-Morse words and palindromic richness. Kybernetika, 48(3), 361–370.
    PDF: picture_as_pdf https://www.kybernetika.cz/content/2012/3/361/paper.pdf
    note Copy bibtex entry to clipboard

2011

  1. Balková L’ubomı́ra, Pelantová, E., & Starosta, Š. (2011). Infinite words with finite defect. Adv. in Appl. Math., 47(3), 562–574. https://doi.org/10.1016/j.aam.2010.11.006
    DOI: bookmark 10.1016/j.aam.2010.11.006
    note Copy bibtex entry to clipboard
  2. Balková L’ubomı́ra, Pelantová, E., & Starosta, Š. (2011). On Brlek-Reutenauer conjecture. Theoret. Comput. Sci., 412(41), 5649–5655. https://doi.org/0.1016/j.tcs.2011.06.031
    DOI: bookmark 0.1016/j.tcs.2011.06.031
    note Copy bibtex entry to clipboard
  3. Pelantová, E., & Starosta, Š. (2011). Infinite Words Rich and Almost Rich in Generalized Palindromes. In G. Mauri & A. Leporati (Eds.), Developments in Language Theory (Vol. 6795, pp. 406–416). Springer-Verlag, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-22321-1_35
    URL: link https://link.springer.com/chapter/10.1007/978-3-642-22321-1_35
    note Copy bibtex entry to clipboard
  4. Starosta, Š. (2011). On theta-palindromic richness. Theoret. Comput. Sci., 412(12-14), 1111–1121. https://doi.org/10.1016/j.tcs.2010.12.011
    DOI: bookmark 10.1016/j.tcs.2010.12.011
    note Copy bibtex entry to clipboard

2010

  1. Balková L’ubomı́ra, Pelantová, E., & Starosta, Š. (2010). Sturmian Jungle (or Garden?) on Multiliteral Alphabets. RAIRO-Theor. Inf. Appl., 44, 443–470. https://doi.org/10.1051/ita/2011002
    DOI: bookmark 10.1051/ita/2011002
    note Copy bibtex entry to clipboard

2009

  1. Balková L’ubomı́ra, Pelantová, E., & Starosta, Š. (2009). Palindromes in infinite ternary words. RAIRO-Theor. Inf. Appl., 43(4), 687–702. https://doi.org/10.1051/ita/2009016
    DOI: bookmark 10.1051/ita/2009016
    note Copy bibtex entry to clipboard